MainframeMaster

COBOL Bulk Operations

Bulk operations in COBOL are essential techniques for processing large volumes of data efficiently. These operations minimize I/O overhead, reduce system resource usage, and significantly improve application performance by handling multiple records in single operations rather than processing them individually.

Understanding Bulk Operations

Bulk operations involve processing multiple data items simultaneously, reducing the number of system calls and I/O operations. This approach is particularly important in mainframe environments where I/O operations are expensive and system resources need to be optimized.

Types of Bulk Operations

1. Bulk File Operations

Bulk file operations process multiple records from files in single operations, reducing the overhead of individual record processing.

cobol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
IDENTIFICATION DIVISION. PROGRAM-ID. BULK-FILE-OPS. ENVIRONMENT DIVISION. INPUT-OUTPUT SECTION. FILE-CONTROL. SELECT INPUT-FILE ASSIGN TO 'INPUT.DAT' ORGANIZATION IS SEQUENTIAL ACCESS MODE IS SEQUENTIAL. SELECT OUTPUT-FILE ASSIGN TO 'OUTPUT.DAT' ORGANIZATION IS SEQUENTIAL ACCESS MODE IS SEQUENTIAL. DATA DIVISION. FILE SECTION. FD INPUT-FILE. 01 INPUT-RECORD. 05 CUSTOMER-ID PIC 9(6). 05 CUSTOMER-NAME PIC X(30). 05 BALANCE PIC 9(8)V99. FD OUTPUT-FILE. 01 OUTPUT-RECORD. 05 CUSTOMER-ID PIC 9(6). 05 CUSTOMER-NAME PIC X(30). 05 BALANCE PIC 9(8)V99. 05 STATUS-FLAG PIC X(1). WORKING-STORAGE SECTION. 01 BULK-BUFFER. 05 RECORD-COUNT PIC 9(4) VALUE 0. 05 BATCH-SIZE PIC 9(4) VALUE 100. 05 BATCH-RECORDS OCCURS 100 TIMES. 10 CUST-ID PIC 9(6). 10 CUST-NAME PIC X(30). 10 CUST-BAL PIC 9(8)V99. 10 CUST-STATUS PIC X(1). PROCEDURE DIVISION. MAIN-LOGIC. OPEN INPUT INPUT-FILE OUTPUT OUTPUT-FILE PERFORM PROCESS-BULK-DATA CLOSE INPUT-FILE OUTPUT-FILE STOP RUN. PROCESS-BULK-DATA. READ INPUT-FILE AT END MOVE 'Y' TO END-OF-FILE-FLAG END-READ PERFORM UNTIL END-OF-FILE-FLAG = 'Y' MOVE 0 TO RECORD-COUNT PERFORM LOAD-BATCH PERFORM PROCESS-BATCH PERFORM WRITE-BATCH END-PERFORM. LOAD-BATCH. PERFORM VARYING RECORD-COUNT FROM 1 BY 1 UNTIL RECORD-COUNT > BATCH-SIZE OR END-OF-FILE-FLAG = 'Y' MOVE CUSTOMER-ID TO CUST-ID(RECORD-COUNT) MOVE CUSTOMER-NAME TO CUST-NAME(RECORD-COUNT) MOVE BALANCE TO CUST-BAL(RECORD-COUNT) READ INPUT-FILE AT END MOVE 'Y' TO END-OF-FILE-FLAG END-READ END-PERFORM.

2. Bulk Database Operations

Bulk database operations handle multiple database records efficiently, reducing the number of database calls and improving transaction performance.

cobol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
WORKING-STORAGE SECTION. 01 BULK-DB-BUFFER. 05 DB-BATCH-SIZE PIC 9(4) VALUE 50. 05 DB-RECORD-COUNT PIC 9(4) VALUE 0. 05 DB-BATCH-RECORDS OCCURS 50 TIMES. 10 DB-CUSTOMER-ID PIC 9(6). 10 DB-CUSTOMER-NAME PIC X(30). 10 DB-TRANSACTION-AMT PIC 9(8)V99. 10 DB-TRANSACTION-DATE PIC X(10). 01 SQL-BULK-INSERT. 05 FILLER PIC X(20) VALUE 'INSERT INTO TRANSACT'. 05 FILLER PIC X(20) VALUE 'IONS (CUST_ID, CUST_'. 05 FILLER PIC X(20) VALUE 'NAME, AMOUNT, DATE) '. 05 FILLER PIC X(20) VALUE 'VALUES (?, ?, ?, ?)'. PROCEDURE DIVISION. BULK-DATABASE-OPS. PERFORM INITIALIZE-DB-BATCH PERFORM COLLECT-DB-RECORDS PERFORM EXECUTE-BULK-INSERT PERFORM COMMIT-TRANSACTION. COLLECT-DB-RECORDS. PERFORM VARYING DB-RECORD-COUNT FROM 1 BY 1 UNTIL DB-RECORD-COUNT > DB-BATCH-SIZE PERFORM READ-TRANSACTION-RECORD MOVE TRANS-CUSTOMER-ID TO DB-CUSTOMER-ID(DB-RECORD-COUNT) MOVE TRANS-CUSTOMER-NAME TO DB-CUSTOMER-NAME(DB-RECORD-COUNT) MOVE TRANS-AMOUNT TO DB-TRANSACTION-AMT(DB-RECORD-COUNT) MOVE TRANS-DATE TO DB-TRANSACTION-DATE(DB-RECORD-COUNT) END-PERFORM. EXECUTE-BULK-INSERT. EXEC SQL PREPARE BULK-INSERT-STMT FROM :SQL-BULK-INSERT END-EXEC PERFORM VARYING DB-RECORD-COUNT FROM 1 BY 1 UNTIL DB-RECORD-COUNT > DB-BATCH-SIZE EXEC SQL EXECUTE BULK-INSERT-STMT USING :DB-CUSTOMER-ID(DB-RECORD-COUNT), :DB-CUSTOMER-NAME(DB-RECORD-COUNT), :DB-TRANSACTION-AMT(DB-RECORD-COUNT), :DB-TRANSACTION-DATE(DB-RECORD-COUNT) END-EXEC END-PERFORM.

3. Bulk Memory Operations

Bulk memory operations efficiently handle large amounts of data in memory, using arrays and tables to process multiple items simultaneously.

cobol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
WORKING-STORAGE SECTION. 01 BULK-MEMORY-BUFFER. 05 MEMORY-BATCH-SIZE PIC 9(4) VALUE 200. 05 MEMORY-RECORD-COUNT PIC 9(4) VALUE 0. 05 MEMORY-BATCH OCCURS 200 TIMES. 10 MEM-CUSTOMER-ID PIC 9(6). 10 MEM-CUSTOMER-NAME PIC X(30). 10 MEM-BALANCE PIC 9(8)V99. 10 MEM-CREDIT-LIMIT PIC 9(8)V99. 10 MEM-STATUS PIC X(1). 01 BULK-CALCULATION-RESULTS. 05 TOTAL-BALANCE PIC 9(12)V99 VALUE 0. 05 AVERAGE-BALANCE PIC 9(8)V99 VALUE 0. 05 HIGH-BALANCE PIC 9(8)V99 VALUE 0. 05 LOW-BALANCE PIC 9(8)V99 VALUE 99999999. 05 RECORDS-PROCESSED PIC 9(4) VALUE 0. PROCEDURE DIVISION. BULK-MEMORY-OPS. PERFORM LOAD-MEMORY-BATCH PERFORM PROCESS-MEMORY-BATCH PERFORM CALCULATE-BULK-STATISTICS PERFORM DISPLAY-RESULTS. PROCESS-MEMORY-BATCH. PERFORM VARYING MEMORY-RECORD-COUNT FROM 1 BY 1 UNTIL MEMORY-RECORD-COUNT > MEMORY-BATCH-SIZE PERFORM VALIDATE-CUSTOMER-RECORD PERFORM UPDATE-CUSTOMER-STATUS PERFORM ACCUMULATE-BALANCE-TOTALS END-PERFORM. VALIDATE-CUSTOMER-RECORD. IF MEM-BALANCE(MEMORY-RECORD-COUNT) > MEM-CREDIT-LIMIT(MEMORY-RECORD-COUNT) MOVE 'O' TO MEM-STATUS(MEMORY-RECORD-COUNT) ELSE MOVE 'A' TO MEM-STATUS(MEMORY-RECORD-COUNT) END-IF. ACCUMULATE-BALANCE-TOTALS. ADD MEM-BALANCE(MEMORY-RECORD-COUNT) TO TOTAL-BALANCE ADD 1 TO RECORDS-PROCESSED IF MEM-BALANCE(MEMORY-RECORD-COUNT) > HIGH-BALANCE MOVE MEM-BALANCE(MEMORY-RECORD-COUNT) TO HIGH-BALANCE END-IF IF MEM-BALANCE(MEMORY-RECORD-COUNT) < LOW-BALANCE MOVE MEM-BALANCE(MEMORY-RECORD-COUNT) TO LOW-BALANCE END-IF.

Bulk Operation Best Practices

1. Optimal Batch Sizes

Choose appropriate batch sizes based on available memory, system resources, and performance requirements. Common batch sizes range from 50 to 1000 records.

2. Error Handling Strategies

Implement comprehensive error handling for bulk operations to ensure data integrity and provide recovery mechanisms.

cobol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
WORKING-STORAGE SECTION. 01 ERROR-HANDLING. 05 ERROR-COUNT PIC 9(4) VALUE 0. 05 MAX-ERRORS PIC 9(4) VALUE 10. 05 ERROR-THRESHOLD PIC 9(4) VALUE 5. 05 ROLLBACK-REQUIRED PIC X(1) VALUE 'N'. 05 ERROR-LOG OCCURS 10 TIMES. 10 ERROR-RECORD-NUM PIC 9(4). 10 ERROR-MESSAGE PIC X(50). 10 ERROR-CODE PIC 9(4). PROCEDURE DIVISION. BULK-OPERATION-WITH-ERRORS. PERFORM INITIALIZE-BULK-OPERATION PERFORM PROCESS-BULK-BATCH IF ROLLBACK-REQUIRED = 'Y' PERFORM ROLLBACK-BULK-OPERATION ELSE PERFORM COMMIT-BULK-OPERATION END-IF. PROCESS-BULK-BATCH. PERFORM VARYING BATCH-INDEX FROM 1 BY 1 UNTIL BATCH-INDEX > BATCH-SIZE PERFORM VALIDATE-RECORD IF VALIDATION-ERROR = 'Y' PERFORM LOG-ERROR IF ERROR-COUNT > ERROR-THRESHOLD MOVE 'Y' TO ROLLBACK-REQUIRED EXIT PERFORM END-IF ELSE PERFORM PROCESS-VALID-RECORD END-IF END-PERFORM. LOG-ERROR. ADD 1 TO ERROR-COUNT MOVE BATCH-INDEX TO ERROR-RECORD-NUM(ERROR-COUNT) MOVE VALIDATION-MESSAGE TO ERROR-MESSAGE(ERROR-COUNT) MOVE VALIDATION-ERROR-CODE TO ERROR-CODE(ERROR-COUNT).

3. Performance Monitoring

Monitor bulk operation performance to identify bottlenecks and optimize processing efficiency.

cobol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
WORKING-STORAGE SECTION. 01 PERFORMANCE-METRICS. 05 START-TIME PIC 9(8). 05 END-TIME PIC 9(8). 05 PROCESSING-TIME PIC 9(8). 05 RECORDS-PER-SECOND PIC 9(6). 05 TOTAL-RECORDS PIC 9(8) VALUE 0. 05 BATCH-COUNT PIC 9(4) VALUE 0. PROCEDURE DIVISION. MONITOR-BULK-PERFORMANCE. PERFORM START-PERFORMANCE-TIMER PERFORM PROCESS-BULK-OPERATIONS PERFORM STOP-PERFORMANCE-TIMER PERFORM CALCULATE-PERFORMANCE-METRICS PERFORM LOG-PERFORMANCE-DATA. START-PERFORMANCE-TIMER. ACCEPT START-TIME FROM TIME. STOP-PERFORMANCE-TIMER. ACCEPT END-TIME FROM TIME COMPUTE PROCESSING-TIME = END-TIME - START-TIME. CALCULATE-PERFORMANCE-METRICS. IF PROCESSING-TIME > 0 COMPUTE RECORDS-PER-SECOND = (TOTAL-RECORDS * 100) / PROCESSING-TIME END-IF.

Common Bulk Operation Patterns

1. Bulk Data Transfer

Efficiently transfer large amounts of data between systems or files using bulk operations.

2. Bulk Data Validation

Validate multiple records simultaneously, collecting errors and processing valid records in batches.

3. Bulk Data Transformation

Transform large datasets efficiently by processing multiple records in memory before writing to output files.

Performance Considerations